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1.0 INTRODUCTION

This is the Third Annual Technical Report under Air Force Office of
Scientific Research Contract F49620-80-C-0088, "Fundamental Properties of

T

Soils for Complex Dynamic Loadings". The report covers the contractual

-1

period 1 August 1982 through 31 July 1983, but the work discussed was

I\
v

mostly accomplished after submission of the Second Annual Technical Report

in April, 1983 [Dass, Merkle, and Bratton (1983)].

3 The FY 1983 modification to the basic contract statement of work
contains three tasks:

_:_ E.l.e. Response of a Clay and Silt to Laboratory Boundary Conditions
- E.1.f. Soil Element Model (SEM) Analysis of Laboratory Test Data

S E.1.9. Theoretical Development/Modification of Constitutive Model

= The first two tasks depend on laboratory test data not yet available, and
. will be reported separately. The third task reads as follows:

: Results of the previous work will establish a framework within

which the material models can be evaluated, and illustrate the

. Timitations of existing models. The theoretical development of
‘ improved constitutive models can develop along one of two

Cht paths. The first involves the development of a new model. The
second involves modification to existing models to include

effects not currently present. The selection of the preferred

A
P

i technical approach will be made and preliminary work begun on \
the new modeling procedure. The work begun last year on pore v

] pressure, rate effects, and shear behavior will be continued =3

N and new aspects of soil modeling which come to 1ight will be A

7 reviewed. Where inconsistencies arise the emphasis will be .:',3:

. placed on matching insitu behavior as opposed to laboratory

behavior. The initial theoretical development work will be R,

M checked in an ongoing fashion utilizing the Soil Element Mode! r®
and CIST calculations. ==

This report contains three major sections. The first section deals

with the general equations for dynamic response of a saturated soil, which

:.i' in@

- establish the mathematical and computational framework into which any soil t‘

o 1

NS

+ ,_j

R
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constitutive model must fit. The second section deals with those aspects
of soil stress-strain behavior which a soil constitutive model may have to
reproduce. The third and final section presents the equations of
elastoplasticity needed for model development, and then discusses the
initial phase of that development, viz the shear failure criterion. The
proposed shear failure criterion has several convenient features:

1. It is related to stress through the first total stress invariant
and the second and third deviator stress invariants, each of
which has a simple physical interpretation.

2. Its parameters can be determined from simple linear plots.

3. The model can match unequal friction angles in triaxial
compression and extension.

4. The ratio of octahedral shear to octahedral normal stress can be
calculated directly (without iteration) when the value of Lode's
parameter is known.

Other features of the model are yet to be determined.

" e A e e, K -7 . . . K
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2.0 DYNAMIC RESPONSE OF SATURATED SOIL

2.1 Effective Stress

In a saturated soil having discrete grains with negligible
intergranular contact areas each grain is completely surrounded by pore
fluid. Therefore the pore pressure acts throughout a soil element, in
both the pore fluid and the solid grains. Superimposed on the hydrostatic
intragranular stress acting within each solid grain due to the pore
pressure is the additional intragranular stress due to intergranular
forces. A plane section through soil will generally cut through both
solid grains and fluid-filled pore space. The intragranular stress acting
on the solid portion of the section must balance the pore pressure acting
on the cut grain surfaces on one side of the section, plus the
intergranular forces acting on the same cut grain surfaces. The pore
pressure acting on one side of the fluid portion of the section simply
balances the pore pressure acting on the fluid portion on the other side
of the section. This situation is shown in Figure 2.1. Summing forces in

the vertical direction yields

+
so that the intragranular normal stress component, o equals the sum of
normal components of intergranular forces divided by the area of solids.
_ Ic
pp—"_ (2.2)

S

It turns out to be more convenient to normalize the sum of normal

components of intergranular forces with respect to At' rather than with

........
........
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respect to As, so we define the effective normal stress, o, by the

equation

It
TR

Comparison of Equations (2.2) and (2.3) shows that

(2.4)

Ja.

T = o =

1

Returning to Equation (2.1), if we define the total normal stress, o, by

the equation

oA, = pA

¢ = t+"5As= (p *+ 9A,

then

so that

;=0-P

Summing forces in the horizontal direction in Figure 2.1 yields

+
->

ZFh = E(I,“1 - TAS =0

so that the intragranular shear stress,?} is
chh

thly

The effective shear stress is obtained by normalizing the sum of

tangential components of intergranular forces with respect to At' rather

than with respect to As. so that
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T 8—1—- (2.10)

and therefore
= T
T:-r_—n (2.11)
2.2 Grain Compression Due to Pore Pressure
If the bulk modulus of solid grains is Ks' then because the pore
pressure, p, acts throughout each grain it is apparent that each grain
undergoes a compressive volumetric strain due to pore pressure of amount

av
A=) = (2.12)
vk

2.3 Solid Skeleton Compression Due to Pore Pressure

If each grain of the soil skeleton undergoes a compressive volumetric
strain due to pore pressure of amount p/Ks, then the entire soil
skeleton will undergo the same compressive volumetric strain, since the
skeleton is composed of grains in contact. (This argument assumes no

grain slippage.) Thus

-(;!E) -k (2.13)
t p s

Note that the skeletal compressive volumetric strain defined by
Equation 2.13 is unrelated to effective stress. It is similar in nature
to displacements of a framed structure due to temperature change.

2.4 Grain Compression Due to Effective Stress

There are two components of intragranular stress: p and i;j. tach
causes grain compression. The component of grain compressive volumetric

strain due to intergranular forces (effective stress) is

5
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:Rzzg-rl—_—nm— (2.14)

The intragranular shear stresses, i}j (i #J), cause grain distortion,
and therefore skeletal distortion. However, this is assumed to have no
! effect on skeletal volume, and is therefore viewed as part of the overall
| skeletal shear response. The above discussion does not include dilatancy,
EE which is caused by relative displacement between grains due to
intergranular slipping, a separate mechanism.

2.5 Darcy's Law and Fluid Drag

If the volumetric flow rate of pore fluid through a soil cross
section of total area A, is Q, the discharge velocity, w, s defined by

the relation

(2.15)

x
n
o

Of course, the actual fluid particle velocity, Q. is larger than Q, since
the actual fluid particle velocity is the ratio of volumetric flow rate to

flow cross-sectional area.

(2.16)

ol -

v = 9
v=m;=

Under steady flow conditions it has been found that the discharge velocity

E; is related to the pore pressure gradient by Darcy's equation
g »

W= Ky Psy (2.17)

where k;; 1s the permeability matrix. Under steady flow conditions ?3:1

7
le fnversion of Equations (2.17) yields ;7§F
T S
6 G,
P v
S L Uy L Py B O I g g R T o TR T A O,
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Puy .-k” J (2.18)

Now consider a pore fluid caused to flow under a given pore pressure
gradient through a soil element of unit volume, shown schematically in
Figure 2.2. The net force exerted on the bounding surface of the soil

skeleton is

foq = -(1 - nlp,, (2.19)

and is independent of the nature of the flowing fluid, and of whether the
flow is steady or variable, since the pore pressure gradient is assumed
fixed. The remaining portion of the pressure gradient under steady flow

is the drag force exerted on the body of the soil skeleton, which is
-1
fdi = Py - fsi = -pyy ¢ (1-n)p,, = -np,; = nkij v (2.20)

Under unsteady flow conditions the fluid drag force exerted on the body of

the soil skeleton is assumed to still be given by the same expression

f = nk1J J (2.21)

2.6 General Equations

Up to this point normal stresses have been considered positive in
compression. However, for reasons of nota*ional and computational
convenience, 1t turns out to be easier 1er normal stresses
positive in tensfon, as well as longitu. ns positive in
extension. Since pore pressure 1s compressive Ly nature, however, pore
pressure will continue to be considered positive in compression. Thus the

relation between total stress, pore pressure and effective stress {is




I The equation of motion for the soil skeleton must consider effective
stress (considered to act over the total area of a soil element), pore

pressure (acting over the bounding area of solids), fluid drag force

! (computed per unit total volume of a soil e1§ment). gravity (acting on the
Q solid mass) and skeletal acceleration. Referring to the soil element

> shown in Figure 2.3, the skeleton equation of motion is

% 3 S (1 -np,y * ok lw, ¢ (1 - no.g, = (1 - n)oil, (2.23)
‘ 13,3 *1 1373 s¥9 s i

Ei where 9; is the ith component of gravity.

The equation of motion for the fluid phase must consider the pore
pressure (acting over the bounding flow area), the skeletal drag force
(computed per unit total volume of a soil element), gravity (acting on the
fluid mass), and the fluid acceleration. Here it is important to

recognize that the discharge velocity, Q, is measured relative to that of

‘ |" PATNER

the sofl skeleton. Again referring to the soil element shown in ;
Figure 2.3, the fluid equation of motion is RN
-1 . E:‘Z:.'-'

-np,, - nk”wj * Nogg; = npf(u1 + ;FJ (2.24) O
e
or E
kil ow, o+ U ¢ Lo (2.25) S
: Pog = Kz Wy T g9y = pely T PeYy y vak
?- 10
: Addition of Equations (2.23) and (2.23), setting N
- (1 - n)ps *Npg =0 (2.26) Eg;?
E yields ﬁé’
o
g P

L. : e el e PR IR I S e -~~'~"-'.‘\.\.-\..1-.-..-.-.-‘A‘-..:.,.“
VA TR T VLR ST S AU T Sl Sl S0 S WP '.s?}blm.bic}k:‘-}lﬂ hh\k_um'kih LVSEDS VEUSEDVASUIP

........



v’

-
.

£

A

''''''''''

933,4 * 995 = olly * og¥; (2.27)
The soil skeleton stress-strain equations, in incremental form, are

dgij = Dijkldezl (2.28)

where degj is the matrix of incremental skeletal strains associated
with effective stress, and Dijk] is the skeletal elastoplastic

incremental stiffness tensor.

From Equation (2.13), the matrix of incremental skeletal strains due

to pore pressure is

d
a:,j = - ,&; 853 (2.29)

Assuming there are no causes of skeletal strain other than effective
stress and pore pressure, it follows that the matrix of incremental

skeletal strains, d‘ij' is given by the expression

de” a ds:J + ‘Eij (2.30)
so that
de:J = de” - d?u (2.31)

Substitution of Equations (2.31) and (2.29) into Equation (2.28) yields

d
doyq = Dy g7 (deyy * -&; 5! (2.32)

The pore fluid stress-strain equation is simple in concept because
the pore fluid is assumed to have a constant bulk modulus, Kf, and zero
shear modulus. Not quite so simple, however, is evaluation of the rate of

fluid volumetric strain at a point. Note that the equations in this

9
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section concern the displacement of a point in the soil skeleton whose

initial coordinates are specified, and the pore fluid velocity at the same
displaced skeletal point. The analysis is Lagrangian with respect to the
soil skeleton, but neither Lagrangian nor Eulerian with respect to the
pore fluid. This is because Darcy's Law applies to skeletal and pore
fluid elements occupying the same point in space and time. Thus we track
neither a particular fluid particle nor the fluid velocity at a fixed
point; rather we track the fluid velocity at a moving skeletal point whose
initial position is specified. Pore fluid velocity is thus a skeletal
quantity, like skeletal displacement, because it is a vector tied to a
point in the skeleton whose initial position is specified. Returning to
the problem of obtaining the pore fluid stress-strain equation, we use the
equation of pore fluid mass conservation to express the pore fluid
volumetric strain in terms of quantities already defined. The pore fluid

mass conservation equation is
(pf"i)’i = - %{(npf) (2.33)

Expansion of Equatfon (2.33) yfelds

Pg Wi * Pg¥y { = Mg - Mo

or

* 1 '] .
Wi go= - ;;(npf + pf,1N1)

w
* n,* i
=-n - ;';“’f TR

10
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0
& - p Dog
= -N - rvd A (2.34)

The rate of increase of porosity, n, is the sum of three terms:

;S (+) the rate of skeletal volumetric strain, éii

'! (+) the rate of solid grain volume decrease due to pore pressure, per

: unit total volume (see Equation (2.12),(1 - n)b/Ks

re (-) the rate of solid grain volume increase due to effective stress,

‘ per unit total volume (see Equation (2.14),

% .

) o4 ii

- -(1 - ")[Trl_-—nﬂ?;] = - -sK;

.. and the total rate of change of pore fluid density is

.

o Dp

1 f

v -_— = ¢ 5

W og Dy {}; (2.35)

|

. Thus Equation (2.34) can be written in the form

' . ds.

d 11 d

N dw; 5= ~degy - (1 - n)Kls’- i bl K% (2.36)

- Equatfons (2.32) and (2.36) can be written in the form

_ Gare - kK g L p g (2.37)

= %y - P T Mg '

. and

‘ d : 2

ii n 1-n e

o - gt g—dp = deyy W (2.38)
X s K K i 1.1 -
53 Finally, the skeletal strain-displacement equations are zﬁi
g 11 S
- w
a NS
l‘-f.\-;‘-f.‘\}'-’,.\l.'{.\',\b;'-jL e e T e T T e e D L e L A A
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&

2 €op = MU, Lt u, L) (2.39)
19 = 20,5 * Y54 :

" where uy is the ith component of skeletal displacement.

JE Summarizing the above results, we have [cf Zienkiewicz and

Bettess (1982)]:

Effective Stress Definition

~ :1j = oij + pG,U (2-22)
ey
N Soil Skeleton Equation of Motion
R Sy, - (1= mpyy + ni;) Wit (1o nlog = (1- nlegii;  (2.23)
t? Pore Fluid Equation of Motion
41 ’
X K;lw, ¢ TR S (2.25)
i Pay m Ky Wy T eg8y = eply t 10w, .
.. Total Density
KY
- (l - n)p * np, = p (2.26)
3 f
!! Soil Element Equation of Motion
2 o‘”’j + pg,l = pui + pf;;f (2.27)
-
n Soil Skeleton Incremental Stress-Strain Equation
o D,
t1kk
N .
) Pore Fluid Mass Conservation Equation -3
) & R,
et - (¢ L= Dap . degy + ooy (2.38) e
;5 s f s ’ 9
. 12 S
v i



Skeleton Strain-Displacement Equation

cqg = ,1, (uy 5y 4) (2.39)

Emphasis in this research effort during the last three years has been
on improving current models for the skeletal elastoplastic incremental
stiffness tensor, Dijkl‘ However, it is important to keep in mind how
the D tensor fits into the complete set of equations for the dynamic
response of saturated soils, which are needed to solve complex dynamic
problems involving wave propagation, liquefaction, and spall.

2.7 Undrained Behavior

As a particular example of the application of the above general
equations to the response of a saturated soil having compressible solid
grains, consider the case of undrained loading. Assume the skeletal
stress-strain response to be incrementally linear, with skeletal
contrained modulus Mk’ coefficient of lateral stress at rest Kok’ and
bulk modulus K,. For undrained loading we assume no flow (w, = w; =
w = 0), and also neglect inertial effects (u,i = 0). The governing

equations then reduce to:

:"j = o"j + p61j (2.22)
d
do

The skeletal incremental stiffness matrix, Dijky, is

13




k1

11 22 33 12 23 31 21 32

13

. 22 K .M M
KN 33 K
12

ij | 23
. 31

N
o)
P
o
o
Q O O o

32
13

0
0
0

o~ 21 0
0 0 0 26
0

© O o o o
o O O O
o

o O o o o

2Gk

_, where
ZGk = Hk(l - Kok)
!! and

"'. '\l; .-

Equation (2.40) yields

do D
TR d
T = =3 (dey * 3&; 61!

Diik19¢k1 , Piikk
'——3'__9?'5_

dp

(2
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K
k

Substitution of Equation (2.44) into Equation (2.41) yields

K
1 k n ,1-n
degy = &, (Kedeqq T g 9P - ot )

or
K K
k 1 k 1 1
(1 - p=)de,. = -[p— (1 - =) * nlp— - p—)1dp
R = ol o) e
or
k-t
1 f S d
dtii=-~K—s-’n<-—-—K;—> dpz-rE (2.45)
1 -
K
where
L (2.46)
Ke " K¢
tnl—p—
1 - k
so that
dp = -chfi = -F6k]dek1 (2.47)

Substftution of Equation (2.22) into Equation (2.40) yields

Dy jkk

K
K
* Pygade * g 844dp

or
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Substitution of Equation (2.47) into Equation (2.48) yields
= Ky

K
k

- M u
=D de (2.49)
= 13k1 77K
where the undrained elastoplastic incremental stiffness tensor, ngk1’
i& is defined as y
N DY, 1 =D, 0+ (1 Kk)Fc (2.50) :
> ijk1 = Yijk "R, . :
ii For the hydrostatic component of undrained loading, Equation (2.49) ﬁfq
yields S
~ S
T
do D K
—;—u = i;ﬂ dtk'l + ‘1 - RK)Fdeii
s

;.’A
b

Ky o5
-~y = [ + (1 - K—)FJdc :
! S
R
K A,
k R
- =K, + 5 de
=Tk T T i N
) S, K; K; -
Lol e o
3 1 - ‘R_ 'T*j_'
s -l
N
: o
.:\|
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11
Ke " Kg
l*ﬂKk—Tk—
1 -
R; d (2.51)
= I T fii
1, (R K
%
i K0
which is the result obtained by [Gassmann (1951: par. 59, p. 15)].
For constrained (uniaxial) compression, Equation (2.49) yields
Ky
dal = Mkdel + (1 - -K-S-)Fdsl
Ky
-+ (1 - gIF] dey
K
k
LR
=Mk+ 1-1 d€1
1, [R K
A b
1 -
Kg
11
(M My, e (R K
A
l-x
s
= T 1 de1 (2.52)
N Lo
Lol
L R, ]

The relation between effective stress and total strain can be

obtafned by substituting Equation (2.47) into Equation (2.40), or directly
from Equation (2.48):
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dogy = Dysyqdeqy (2.53)
where
K

Equations (2.53) and (2.54) can be used to construct effective stress
paths with strain contour overlays.

Equations (2.51) and (2.52) define the undrained bulk and constrained

moduli, respectively.

1 1
Ke " K
1+nKk—7;—
1 -
‘. Ks (2.55)
S =
llz_+,,f_K_S
(3 1- k
K¢
ek
M, - K -
k k f S
1+(—K-—s)+mk L=
1 -¢
S
M, = S (2.56)
1, (KK
| SuRELY B A
S 1 - ?E
-3

and from Equations (2.55) and (2.56), or directly from Equation (2.50) we
can obtain the value of K . Equations (2.55) and (2.56) yield

K 1+ 2K
n! = _.3_ﬂ (2.57)
u

s0 that
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K ol lu 1) 2.58
ou=-7 M;" (2.58)

Equation (2.50) yields

so that

Combining Equations (2.47), (2.51) and (2.55) yields

.Y
Ty T e L (2.57)
N bogy/3 " 8oy 3K, T
-~ %53

The important thing to notice about Equation (2.57) is that it holds even

when the principal total stress increments are unequal. Thus, for example, {Z?
if

8oy = oy £ b0 (2.58) e

Equation (2.57) yields

v -
A B

AP = - §‘4°1 + 2403) = -B[Ac3 + %-(Aal - A03)] (2.59)
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3.0 SOIL DYNAMIC CONSTITUTIVE MODEL REQUIREMENTS
3.1 The Nature of Soil
Sofl is a particulate material. Soil particles vary in size, shape,
hardness and surface texture, and although they can be bonded together by
mineral deposits, this is the exception rather than the rule. There are
four primary consequences of the particulate nature of soil [Lambe and
Whitman (1969: Chapter 2)]:
a) Deformation of soil is partly the result of individual particle
deformation, but primarily the result of interparticle sliding
and rolling.

b) Soil is inherently multiphase. The soil particles constitute the

solid phase, and the remaining space is pore space. The pore
space is filled by pore fluid, consisting of a gaseous phase
(usually air) and a 1iquid phase (usually water). In dry soil

the 1iquid phase is absent, and in saturated soil the gaseous

phase is absent. The pore fluid chemically influences the nature

of soil particle surfaces, including contact surfaces, and hence
affects the process of interparticle force transmission and
resistance.

¢) The pore fluid can flow through the pore space. Whether flowing
or still, the pore fluid physically interacts with the soil
particles, thus further influencing the process of interparticle
force transmission and resistance.

d) Sudden load changes are carried jointly by the soil skeleton and

the pore fluid. The resulting change in pore pressure usually

20
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causes pore fluid flow, which alters the proportion of load

i i carried by the soil skeleton and the pore fluid, as well as

changing the configuration of the soil skeleton.
Because soil deforms primarily by interparticle slip, soil strength ]
is basically frictional in nature; and because pore fluid pressure reduces ,';I
interparticle contact normal forces, the strength of a soil element is ]

controlled by the difference between the total normal stress acting on the

element and the value of the element pore pressure, i.e., by the effective
stress. Because of the nature of soil formation and deposition processes,

natural soil deposits are often inhomogeneous and inherently anisotropic,

_ and soil profiles are frequently erratically discontinuous.

3.2 Soil Stress-Strain Characteristics

Soil stress-strain characteristics are a consequence of the

. particulate nature of soil and the processes by which soils are formed,
deposited and subsequently altered in place. The following 1ist of soil
stress-strain characteristics is prioritized for construction of soil
constitutive models to predict the behavior of soil masses under complex
. dynamic loads, such as explosions, earthquakes, and moving vehicles:

= a) Soil deformation and strength are governed by effective stress.

b) Both volumetric and deviatoric stress-strain curves are

nonlinear, even at small strains, and the type of nonlinearity is

stress path dependent. Figure 3.1 shows the continuous \
transition from concavity to convexity with respect to the !
vertical strain axis of a plot of vertical effective stress
versus vertical strain, measured in a drained triaxial test. The ::'::
:: parameter controlling the shape of the stress-strain curve is the !

o 21
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c)

d)

e)

direction of the effective stress path. At mean pressures above
500 psi some volumetric stress-strain curves exhibit a convex
yield region due to grain crushing at highly stressed
interparticle contact points, but at even higher mean pressure
the volumetric stress-strain curve again becomes concave to the
strain axis. Figure 3.2 illustrates the above behavior. A
similar phenomenon is observed for one-dimensional compression
curves at much lower stresses, due to interparticle slip followed

by subsequent skeletal stiffening.

Under drained conditions, shear strain and volumetric strain are
coupled. This coupling is called dilatancy. Under undrained —
conditions the tendency of the soil skeleton to change volume is
opposed by the relative incompressibility of the pore fluid,

which develops an excess pore pressure sufficient to maintain the ?ﬁ
sofl skeleton at constant, or near constant volume. It is vital

that soil dilatancy be correctly modeled in order to obtain the

correct pore pressure and effective stress under all loading

conditions.

At large shear strain a given soil approaches a residual or

ultimate shear stress and void ratio which depend on the

223
i

confining pressure, but are independent of the initial void ratio

N
Ay ‘e

s
prior to shearing. The residual or ultimate shear stress and ggg
void ratio define the critical state at the given confining ;;:
pressure [Casagrande (1936: 262)]. ?:g
In approaching the critical state an initially dense or over- 53;
<

consolidated sofl will attain a peak shear stress greater than :_!
22 ;i;ﬁ
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the critical state value. The peak stress generally corresponds

closely to the maximum expansion rate. At larger shear strains
in a strain controlled test the shear stress decreases (strain
softening) and the soil continues to expand at a decreasing rate
until the critical state is attained. Both dense and loose soils
show a tendency toward densification at small shear strains, due
to particle rearrangement. Loose sands initially compact, then
expand as they approach the critical state; normally consolidated
clays compact throughout their approach to the critical state.
Loose sands exhibit steadily increasing shear resistance as they
approach the critical state; even normally consolidated clays can
exhibit a peak shear resistance with subsequent strain softening
as they approach the critical state. These basic soil stress-
strain phenomena are illustrated in Figures 3.3, 3.4, 3.5 and 3.6.
The intermediate principal effective stress can have a
significant influence on both the peak and the ultimate friction
angles. Figures 3.7 through 3.26 [Merkle (1971)] show soil

strength data plotted in the octahedral plane. In those plots @

is the Mohr-Coulomb friction angle, and u is Lode's parameter.
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e
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N
23

If Gé had no influence on §, the data points would all lie on a

straight 1ine of constant §. More will be said about these plots

in Section 4.

Because soil particles are generally not bonded together, soil !

tensile strength is primarily the result of particle '%

interlocking, and is very small. Soil tensile faflure causes :?

stress redistribution in a loaded soil mass. !
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Plastic (irrecoverable) volumetric and deviatoric strains are
both generated from the onset of loading.

Separate yield and plastic potential functions appear to be
necessary for compression and shear, for a classical plasticity
model. Plastic flow is frequently nonassociative, especially in
shear.

Soils exhibit the Baushinger effect, i.e., loading beyond the
virgin yield point in one direction increases the elastic range
and yield point for unloading and reloading in that direction,
but decreases the elastic range and yield point for subsequent
loading in the opposite direction [Timoshenko (1956 11:412);
Nadai (1950:20)].

Soil stress-strain behavior can be strain rate dependent, both
because the effective stress-strain behavior of the soil skeleton
is strain rate dependent, and because of the time dependence of
pore fluid flow and the associated pore pressure adjustment.
Cyclic loading in shear and/or compression produces a number of
effects: 1initial densification; hysteresis; decreasing
increments of permanent shear and volumetric strain with each
cycle, leading eventually to stable hysteresis; stiffening; and
decrease in damping.

Natural soil deposits exhibit both inherent (depositional) and
stress- (or strain-) inducéd anisotropy.

Sample disturbance often makes the stress-strain behavior of a
soil sample different in the laboratory from what it would have

been in-situ.
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The Soil Element Model has been and will continue to be used in this
research program to test the ability of soil constitutive models to
reproduce the above stress-strain characteristics. These characteristics
significantly influence the response of a soil mass to complex dynamic

Toads associated with explosions, earthquakes and moving vehicles.
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4.0 ELASTOPLASTIC MODEL DEVELOPMENT

4.1 Basic Equations
If a cylindrical soil specimen is consolidated under an {sotropic
stress (Eic = ;éc = EBC), then subjected to drained compressive
loading, unloading, and reloading under constant confining stress
(5) = 53 = 53,3 9 > 93.), the stress-strain curve appears as
shown fn Figure 4.1. Several important features are shown in Figure 4.1:

1. The stress-strain curve is nonlinear, even for small stresses and
strains.

2. Upon unloading from point A, some of the total strain is
recoverable (BE), but the remainder is irrecoverable (0B).

3. Reloading occurs along a path (BC) somewhat different from the
unloading path (AB), until reaching the previous maximum stress.
At this point additional loading approaches and proceeds along
what appears to be a continuation of the virgin compression curve
(OA), with 1ittle apparent influence of previous unloading or
reloading.

4. Unloading and reloading occur along paths whose secant from zero
to maximum stress has a slope very close to that of the initial
tangent to the stress-strain curve. This means that the
irrecoverable portion of any strain increment is essentially the
difference between the total strain increment and the strain
fncrement associated with a straight 1ine stress-strain curve

having a slope equal to that of the initial tangent tu the actual

stress-strain curve.
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By convention, recoverable strains are called elastic, and
{rrecoverable strains are called plastic. If the unloading and reloading
curves in Figure 4.1 both retraced the virgin loading curve (OA) instead
of following curves (AB) and (BC) the stress-strain behavior would be
called nonlinearly elastic. As it is, the linear portion of the stress-
strain behavior shown in Figure 4.1 is elastic, and the nonlinear portion
is plastic. Since some of the stress-strain behavior is elastic and the
rest is plastic, the overall stress-strain behavior is called
elastoplastic.

Multiaxial elastoplasticity theory extrapolates the above one-
dimensional stress-strain observations, and assumes that plastic strains
are superimposed on elastic strains calculated according to the theory of

elasticity. Thus

= et P
tij = ﬁij + tij (401)
where
e e

When the elastic behavior is isotropic, Equation (4.2) reduces to the form
e e
oij = MKoEkk61J + M(l - KO)EiJ (4.3)
where M = constrained elastic modulus

Ko = coefficient of elastic lateral stress at rest.

The parameters M and Ko are assumed to be constant, independent of

strain.

From Equation (4.2) it follows that

e e
dogy = Dygpydeyg (4.4)
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so that a unique relation exists between the elastic strain increments at
a point and the corresponding stress increments. However, what is known
in a strain controlled formulation is not the elastic strain increments,
deﬁj. but the total strain increments, de,;, which differ from the
elastic strain increments according to the incremental form of

Equation (4.1),

degy = degy + def (4.5)

Once the possibility of plastic strains is recognized, four questions
arise:

1. Can plastic strains occur?

2. If they occur, what will be their relative algebraic values?

3. If they occur, what will be their actual algebraic values?

4., Will they occur?
Obviously, Question 2 is a subset of Question 3. The reasons for listing
the two questions separately are the mathematical and physical conditions
used to answer them, which are explained below.

The mathematical theory of elastoplasticity presented here contains
four parts, each needed to answer one of the above four questions:

1. A yield criterion, assumed to be of the form

)
f(a”, e”’ =0 (4.6)

satisfaction of which is a necessary condition for the occurrence

of additional plastic strain at a point.

2. A plastic potential function, 9(°ij)’ for which
P 2
defy = o -a-g (4.7)
1J
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which gives the relative algebraic values of the plastic strain

increments, i.e. the direction of the plastic strain increment

vector in stress space. Equation (4.7) is called a flow rule,

and the scalar constant dx is determined by the next condition.
3. The requirement that Equation (4.6) be satisfied not only at the

beginning of yielding, but throughout yielding as well, so that

df = gi do —2£— de?. =0 (4-8)
ij p ij

Equation (4.8) is called the consistency condition, and yields
the value of dx in Equation (4.7). It therefore permmits

calculation of the actual algebraic values of the plastic strain

increments.

4. The requirement that the calculated plastic strain increments

lead to a positive plastic work increment,

p p
dw" = aijdeij > 0 (4-9)

1f Equation {4.9) is not satisfied, then additional plastic

. T I I
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NI AR T
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X e
! Oy

‘
1]
LN
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strain does not occur at a point, in which case all strain

« .
s ) e s
. s

increments are elastic.

Equations (4.6), (4.7), (4.8), and (4.9) have been written assuming zii
one yield criterion (or yield surface), and one plastic potential ;;E
function. There can, however, be more than one yield surface, and an ;EE
equal number of corresponding plastic potential functions. If this é;
happens, then the above four equations apply to each active yield =
surface, Thus, if m yfeld surfaces are active, there will be a set of o
plastic strain increments for each active yield surface, the values of E‘

:-:-:

‘e ?
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which are determined by 4m equations (counting Equation (4.7) as one

tensor equation.)

The stress tensor %3 contains nine elements,

Y 11 ‘12 °13
l. %5 = | %21 990 9y3 (4.10)
_ 31 32 ‘33
S
- but only six are independent because
2 o44 = 9 (4.11)
; Each stress component, 94js can be expresed as a function of the
= three principal stresses, S1s %2» 93, and the nine direction cosines
j%' of the three principal stress axes with respect to the arbitrary Cartesian
axes used to define the %3 However, if a unit vector pointing in the
ii direction of the ith principal stress axis is‘éi, then because the three
- principal stress axes are orthogonal, we have
. e, Ej = 843 (4.12)
v Equation (4.12) represents six independent scalar equations involving the iﬁ;;
E; nine principal stress axis direction cosines. Thus, there are only three ;;%;E
; ‘ independent principal stress axis direction cosines. Let them be a1» ?%i;
!g ay, and a;. Then we can write -Eé
944 o'lj(ol’ Ops 033 G9s Gy, 03) (4.13) .-'..Z_
’ <9
.- 1f a material is isotropic, the dependencies of the yield function, f;?
B f, in Equation (4.6) and of the plastic potential function, g, in ;;?
gi Equation (4.7) on the principal stresses 91» 0y, and oq are i;;
(a b
independent of the orientation of the principal stress axes with respect R
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to the coordinate axes. This is a specific application of the principle
of material frame indifference [Malvern (1969:389)]. This means that not
only do s Gps and aq not appear in either equation, but also the

stress functions which do appear are insensitive to subscript
interchanges, 1.e., they are symmetric functions of 915 T and o3

The total stress invariants 11, 12, and 13 satisfy the required

conditions of symmetry. They are:

I = 0p) * 0pp * 033 (4.14)
1 92 °22 %23 °33 931
I, = - + + (4.15)
%921 922 932 933 °13 11
1 912 913
I, = (4.16)

37 |2 %22 923
31 732 33
Equation (4.7) gives the relative values of the plastic strain
increments, from which the relative values of the principal plastic strain
increments and the orientation of the principal plastic strain increment
axes can be determined. Since the plastic potential function, g, is a

function of the three total stress invariants, Il, 12, and 13. given

by Equations (4.14), (4.15), and (4.15), we have

g = 9(11, I, 13) (4.17)

so that Equation (4.7) can be written in the form

312 313

3 )
3§_ aoij * 3%- aoij) (4.18)

2 3

P 2 )
deij = dA —2— = dA(s‘?Y ac

aI1 .
aaij ij

31




Now Equations (4.14) and (4.15) yield

1 0 o
o,
v | ° 1 0f =8y (4.19)
o o0 1
~logy * 033 991 931
a1,
Fog; " %2 -log3 * o) 932
L 93 93 - oy * °22’J

(4.20)

= aji - IIGiJ = Oij - Ilaij
To obtain the derivatives 313/301-3- we notice that if the matrix

of cofactors or signed minors of the stress matrix, g is denoted

I, then since according to Equation (4.16) the determinant of g is
1

15, the inverse of o, denoted o”°, is
oy
o=y (4.21)
3

Now the Laplace expansion for the determinant I3 is

1
I3 =-3' Gijzij (4.22)

and direct expansion will demonstrate that

EEE. = L., =1 O‘I'T ;;;i
T,-1 -1
= I3 U,'j = I3°ij (4-23)
Substitution of Equations (4.19), (4.20), and (4.23) into Equation (4.18) »_;_q
yields
32 L
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"l‘ ' g l‘{‘

P 3 ? ? -1
dtij = dA[S?I cij + sgé(oij - 11511) + 3?; I3 Oij] (4.24)

Since gfl has the same principal axes as does o, it follows from
Equation (4.24) that gsp also has the same principal axes as does o.
This condition is a consequence of the assumption of material isotropy,
and not an independent assumption.

A convenient assumption concerning the dependence of the yield
function, f, in Equation (4.6) on plastic strain is that f is a function
of stress, %3 and plastic work, up, where plastic work is in turn a

function of plastic strain [Malvern (1969:367)].
Py _ PP
f(OiJ’ Cij) = f[cij’ H (E.ij)] (4.25)

Now Equation (4.9) can be written in the form

p

awP = 24P - 4. .deP (4.26)

acP iJ i g
ij
so that
0 .
3: = oij (4.27)
i€
1§

The application of the above equations can now be outlined.
4.2 Stress Control Formulation

When stress increments are prescribed, the elastic strain increments,

degj, are calculated from the equation

_ 1+

e
dciJ s - f-llsij * S oy (4.28)
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where E = Young's elastic modulus
v = Poisson's ratio
Provided Equation (4.6) is satisfied, so that yielding can occur, we write

Equation (4.8) in the form

of of p
df = a—o-g doij + m dH = 0 (4.29)

Since the invariants Il’ 12, and 13 are homogeneous functions of
degree 1, 2, and 3, respectively, Euler's theorem states that
Equation (4.18) yields
p P _ 3 3 3 _
WP = oy el m(a"I 1, +2 ﬁ; I, + 3 3?; 13) = hdx (4.30)

where
3 ] L)
h=3%-11+23-§-12+33§;13 (4.31)

Equation (4.30) can be verified by direct expansion of Equation (4.24).
Thus Equation (4.29) can be written in the form

of af
df = 3°ij doij + da(h ;;5) =0 (4.32)

and therefore the flow rule proportionality constant is

do
LTI (4.33)
TR
WP
The plastic strain increments are calculated from Equation (4.7),
defy = dr 21 (4.7)

aoij

and the plastic work increment is calculated from Equation (4.30)
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SO fa

be

I 3
[ '.r‘..

,es
A

of d
aaij 013
de 2 hdx = - _—_37—— (4.34)
WP

Therefore when hdx > 0, Equation (4.9) will be satisfied. In that case

yielding will occur when Equation (4.6) is also satisfied, and the total

strain increments are given by Equation (4.5)
= det P
deij = deij + deij (4.5)

The elastoplastic incremental compliance tensor is obtained by writing

Equation (4.5) in the form

- de® p
deij = deij + deij

e )
= Fiserdogy * O F?j (4.35)
where, from Equation (4.28)
e v 1+
Fijkr = - F %581 ¥~ ik (4.36)

Substitution of Equation (4.33) into Equation (4.35) yields

ag _af
0., 00
_ e ij "kl _eep
deyy = <pim . ___f_.>aa“ = F{ oy (4.37)

h —
awP

where

ag _af
aﬂij 30k1

ep _ e
Fijkl = Fijk] - -;;t:f:_- (4.38)

aHp

4.3 Strain Control Formulation
When strain increments are prescribed, the elastic strain increments
are not immediately known. Combining Equations (4.4), (4.5), and (4.7)

yields
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e e e 4P

e 3
g and substitution of Equation (4.39) into Equation (4.32) yields
] af = 25 (dey; - da —9-) + da(h 2 ) (4.40)
@0 ¢ 'ijk1
- ij awP
;ﬁf and therefore the flow rule proportionality constant is
af e
- Togy idk1 %
= Provided hdx is positive, the plastic strain increments are calculated
o from Equation (4.7),
P _ 2
e defy = 3 (4.7)
| H
- and the elastic strain increments are calculated from Equation (4.5),
. deij j - deij (4.42) .
-~ The stress increments are then calculated from Equation (4.4), :;5j
- N
] e e
] dcij = Dijk1dek1 (4‘4) t\:J.J
il
S? The elastoplastic incremental stiffness tensor is obtained by writing NN
Equation (4.4) in the form
e Pa _ ne ) 2 Fe
- where, from Equation (4.3), o
:‘\\' e "_s 2
= Dyjk1 = MKodyg8ky * M1 - Kpdegye4 (4.44) ::!
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Substitution of Equation (4.41) into Equation (4.43) yields

e g af e
e ‘Diqu aqpq)(aors Drsk1)
dosg = | Vg - I pp - g e | %

3opq pqrs aors aNp

ep
= D,'jk-ldzkl (4.45)

where

f e

(05, . =) (-2 08_ .)

b0 _ e ) ijpq 3opq 30,.¢ rskl (4.46)
ijk1 ijk1 af e 3g _ a3t

8apq pars o, 2P

4.4 Mixed Boundary Value Formulation
When a complementary combination of stress and strain increments is
prescribed (e.g. as in constrained compression), Equation (4.32) can be

written in a form which is a combination of Equations (4.32) and (4.40).

af of .e ag
df = [aaij dogylg, * [aa” Dy 51 (dey - A aak,’]de

s W) -0 (4.47)

P

where the symbols [ ]do and [ ]de mean summation only over indices
of prescribed stress or strain increments. The flow rule proportionality

constant is therefore

of of e
do + D de
" [“13 ”]do [“m 1jk1 "‘]de (4.48)
= = T T
L

of De af
["’ij 13kT 304 ] de aWP
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Equation (4.48) reduces to Equations (4.33) or (4.41) in the cases of

AL

prescribed stress or strain increments, respectively. Provided hdx is

£l
.

positive, the plastic strain increments are calculated from Equatfon (4.7)

P _ ?
del; = da E‘%

,
a

(4.7)

T

.
o'
:

and the elastic strain increments corresponding to the prescribed total

strain increments are calculated from Equation (4.5)

7, e _ - p
‘A [deij = deij deiJ]dt (4.49)
L ]
- At this point we know some stress increments but not the corresponding
~ elastic strain increments, and the complementary elastic strain increments
A but not the corresponding stress increments. To calculate the unknown
: stress and elastic strain increments we write Equation (4.42) in matrix
a form as
.
e e e
| {de} L : D1z |(1de73 4
< e e == — — (4.50)
- \
e e e
i {do} , Dy1 | Dpp ILHde},
where an overbar indicates a matrix of prescribed quantities, and the
5; partitioned matrices gjl and ng are square and symmetric.
- Expansion of Equation (4.5) yields
= 0% (@c®), + DS, {de€ 4.51
e {do} 1 211 {de"} 1 212 {de™} 2 ( )
e
{do} 2 = 2;1 {ace} 1 * 2;2 {dee} 2 (4.52) \
-:; RS
Equation (4.52) yields :fij
A
s, |
< i
s
L RS

-----
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e e,-1 e e
{dt }2 = 222 { fab} 2 - 221 {ak } ;} (4.53)
and substitution of Equation (4.53) into Equation (4.51) yields
e e e ne, -1 e e
{do} 1° [of {de™} 1 * D105 i{ﬁo} 2 = D7y {de*}) 1}

e e e,-1. e e e he,-1

The remaining unspecified total strain increments are calculated from

Equation (4.5),

e P
[deij = deij + deij]do (405)

The elastoplastic incremental compliance ténsor, F$§k1’ given
by Equation (4.38), and the elastoplastic fncremental stiffness tensor,
D?gkl’ given by Equation (4.46), are both functions of stress and
plastic work only, and are therefore independent of which stress and

strain increments are prescribed. Note that since
ep _ nép c€p
doiJ = ijk1dek1 = DijkIFk1pqd°pq . (4.55)
it must be that
ep gep _
Dijlek1pq = 61p0jq (4.56)
so that DeP and FeP are the inverse of one another.

4.5 Computational Format

For computing purposes, it is convenient to write many of the above

equations in matrix form, as was done with Equations (4.50) through

Attt

(4.54). First we set

¥
3
Q

- . PR ‘,"',':',:' T
. .. - p | LI i . -
i . oo oS T, e leal,
P T PRI N
. - a4 . PR I ) H
e e s, RO
B PR Cear v DA !

s
P
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4 011 N\
. %22
933
%12
{*}=q¢ (4.57)
. q %23
< 93
N, °21
~1
932
N \ 913 )
) and
- F
= 11
o €22
€33
B €12
(%) = ¢ epy f (4.58)
‘ €31
q 21
' €32 3
;3 €13 o
n Equations (4.57) and (4.58) indicate that the stress and strain spaces are g!
. nine-dimensional. However, since -;{
- °3 = %4 (4.11) \.;
and %?
€53 = €53 (4.59) .,
“ all stress and strain points are restricted to six-dimensional coincident :;
- subspaces. We therefore set ??
S
= 40
~, z.‘
b 4
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o1 011
i 02 022
3\ 033
el T \VE a2 (4.60)

V2 023
o V2 a3

and
€] €11
-
= €2 €22
A €1 €3\ €33
= c4 V2 12 (4.61)

- €5 V2 €23
. .
' €6 V2 e3)

. Equations (4.60) and (4.61) give the correct expressions for work and for

v the derivatives of the stress invariants.

T T raw
dW = {0} {de}= {o*} {de*} (4.62)
l1=01 %ot (4.63) ;
I, = -lojo, * op03 * a30,) * 3log” * o * o) (4.64)

1 1, 2 2 2 L

137 °1%2°3 " - oas% - 71 * 9% * o3 ) (4.65) o
-~

1 N

1 )

:J‘.‘i',

s‘i:"\

{a_ll} 1 (4.66) ".t:'::
2 0 S
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e W % r ° FJ\IZ- °12 ’

ﬁ‘l_OSOG - 0304

N3 %6°4 - °1% Ve 223

1
D/‘2-”4"5 - "2"6J V2 Z31)

There are other six-element stress and strain vectors which give the

correct expressions for work and for the derivatives of the stress

invariants; for example:
o11 €1l
022 €22
933 and €33
°12 2e12
023 223

031 2¢31

(4.67)

(4.68)
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The reason for defining the six-dimensional stress and strain vectors by

Equations (4.60) and (4.€1) is that if the 9 x 9 elastoplastic incremental

stiffness matrix, DP, in the equation

{do*} = D®P {de*} (4.69)

is symmetric,

then the stress and strain vectors, {o} and {¢} defined by

Equations (4.60) and (4.61) are the only stress and strain vectors for

which the 6 x 6 elastoplastic incremental stiffness matrix, g?p, in the

equation

{do}

=£9P {de ) (4.70)

will also always be symmetric.

In matrix form, the equations for a complementary combination of

prescribed stress and strain increments are as follows. Let

{da}
{ds}
{dv}
{ds}

Then Equation

column matrix of unknown stress increments

column matrix of prescribed stress increments

column matrix of prescribed strain increments

column matrix of unknown strain increments

(4.47) can be written in the form

T T .
aof af e g of y _ .
df = {ﬁ} {dB} +[{—3-Z Ell;{dy}- dl {30}H+ dl(ha—w'ﬁ = 0
(4.71) 3
so that the flow rule proportionality constant is therefore Eiﬁ
Lo
|
T T @
25y fae + 2y €8 (dn) %
® - of T e a° of (4.72) ;;ﬁ
(7a) G130 - NP R
RS
ol
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The reduced elastic stiffness matrix, gjl, appearing in Equations

(4.71) and (4.72) contains only those elements associated with the

prescribed strain increments, {dvy}, and the corresponding (unknown) stress

increments, {da}. Provided hdx is positive, the plastic strain increments

are calculated from the matrix form of Equation (4.7),

{deP} = dr {%%}

(4.73)

and the elastic strain increments corresponding to the prescribed total

strain increments are calculated from Equation (4.5)

{dv&} = {dy} - (&P}

Equations (4.50) through (4.54) take the form

e e e
— o a— = ——-l — — — — —

e | e e
{ds) o1 1 €5y [ de®

or

{da}= CFy {dx®}+ €T, {ds®)

{d8}= Cpy {dv®}+ L5, {ds®)
so that

{de®) - £§§'1§{d8} - Loy {@° }l
and therefore

e e .e,-l.e e e e,-1

tda} = {Eyy - Cpplop "Cor) Tav ) * Lyplpp ~ 18]

and

{ds} = {ds®} + (dsP)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

The elastoplastic incremental stiffness matrix is, from Equation (4.46),
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LA (4.81)
c® (29, . 2f
{ac } aup

4,6 Material Behavior
So far the discussion of the theory of elastoplasticity has been
mathematical. Material behavior comes into play in selecting the yield
function, f, and plastic potential function, g, on the basis of test

data. Frequently the mathematical form of the yield function is based on
strength or failure data, and a hardening function is added to convert the
failure criterion to a yield function. [Newmark (1960:24)] pointed out
that the definition of failure should be as precise as is the resulting
failure criterion. From a mathematical viewpoint, once the yield function
and plastic potential function are defined, failure occurs when the
elastoplastic incremental stiffness matrix, g?p, defined by

Equation (4.81), becomes singular, i.e. when
1c®P- 0 (4.82)

The theory of plasticity was first developed for metals, for which
the yield function is often independent of the hydrostatic stress

component. (However, ductility of metals often increases with increasing

n hydrostatic stress.) What this means mathematically is that in three-

) dimensional principal stress space metallic yield functions which are ;f&
independent of the hydrostatic stress component are right cylinders, with g;;
their axis along the 1line 0y = 95 = a3, called the hydrostatic ,:E
axis. In such cases interest naturally centers on the shape of the é;;

;;- intersection of the yield surface with a plane normal to the hydrostatic :;:

- axis, called a deviator or octahedral plane, and having the equation E:
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01 + 02 + 03 = Il = CDﬂStant (4.83)

Figure 4.2 shows the hydrostatic axis and an octahedral plane in principal
stress space.

For soils the hydrostatic stress component definitely influences the
failure surface, but often in such a way that octahedral cross-sections of
the failure surface at different values of I1 are geometrically similar,
increasing in size as a function of Il' When this happens all strength
data can be plotted on a single octahedral plot by normalizing the data
with respect to the I1 size function. This is how Figures 3.7 through
3.26 were obtained. For example, The Drucker-Prager failure surface
assumes that octahedral cross-sections are circular, with the radius a
linear function of I, {(Drucker and Prager (1952:158)].

The geometrical justification for plotting shear strength data in the

octahedral plane using coordinates

Oy -~ O
sin ? = -:1—_—3 (4.84)
9 * o3
and
20, - 04 ~ ©
pe—2—1_3 (4.85)
% T %3

as shown in Figure 4.3 can be found in [Merkle (1971:346)]. Using the
form shown in Figure 4.4, strength data from many different investigations
can be compared on a common basis.

Although the Mohr-Coulomb frictfon angle, #, and Lode's parameter, u,
are useful for plotting strength data in the octahedral plane, the

fnvariant quantities
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oct = T (4.86)

Toct = Tg = ?17 \ﬂ1 - "z’2 * oy - "3)2 * log - °1’2 (4.87)

J3
7
. cos 3u = B 742 (4.88)
| (2)
~ T
- J3 = (0'1 - Uoct)‘az - ooct)(03 - Uoct) (4.89) n‘
- are more useful in constructing curves to fit the data. The variables
‘2 %ct’ Toct and o are shown in Figure 4.3, where Tys To» and aq
represent principal stresses. o
- 4.7 Drucker's Equivalent Stress Function
- Although his principal concern was developing an invariant shearing ;:‘:
L stress-strain relation, rather than defining the shape of the octahedral o
;‘; cross-secion of a failure surface, [Drucker (1949:352)] proposed what o
) amounts to a formula for variation of Toct with v. He proposed the R
. following expression 7o~ an equivalent shearing stress,?eq: ‘_;’_};f
= 2,,3,1/6 R
., Teq = Toctll - 2.2503/05) (4.90) ;5:
ag
= where from Equation (4.88) we have R
) o
3,2 2 R
3 _cos"3u 1 + cosbu (4.91) i
:,_3. ) * ] ° ) ool
2 N
R
Substitution of Equation (4.91) into Equation (4.90) yields L
T i
) eq ESAS
- Toct © T * cosbu,1/6 (4.92) . J
(1 - —_3__) - '_._.
. a7 i
‘; -
e AT A A T e e e e T e T I T T i T s e e T e L ey
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Equation (4.90) defines a smooth curve in the octahedral plane for which

lines of symmetry occur at 30 degree intervals [cf Hill (1950:18)]. It
causes the value of Toct t0 be the same in triaxial extension (u = 60°)
as in triaxial compression (w = 120°), and as Hill explains, such an
octahedral cross-section corresponds to an isotropic material which does
not exhibit a Baushinger effect. Equation (4.92) can be written in terms
of Lode's parameter, u, instead of the octahedral polar angle, », by using
the relation [Merkle (1971:733)]

2

J 2 2,2
cos?3u = 6.75 3 < 49 -4 ) (4.93)
Jz (3 + [ )
so that Equation (4.92) takes the form
T,
N eq
Toct * Zs . 527178 (4.94)
[1 _ 4 = U ]
3(3 + )
When u = #1, Equation (4.49) yields
T,
Toct = —z—% = 1.07 _.eq ' (4.95)
(3)
and when y = 0, Equation (4.494) yields
Toct = Teq (4.96)

4.8 Toppings Failure Criterion

[Topping (1955:186)] proposeg a Mohr circle type relation in the
octahedral plane, to account for the possibility that the octahedral shear
stress values at failure in triaxial compression and triaxial extension

may be different at the same octahedral normal stress. His equation is
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T, c052 3o , T Sin

23u

oct

) ( )cos 3 (4.97)
-
he

Equation (4.97) can also be written in the form

a J
T . =A*+B|— (4.98)
oct ~ J 372 :
= 2
where
e A=0.5(t +T) (4.99)
B B =1.3(7. - Te) (4.100)
~
e or
e en-c|2f) (4.101) %
~ oct ~ 2,372 ) e
(3 +4u%)
. where
= 0.5(t, - 1) (4.102) =
Note that Equation (4.101) permits evaluation of the constants A and C by
. a straight line plot.
N 4.9 Kirkpatrick's Failure Criterion
- :~':'.~U.
| [Kirkpatrick (1957)] performed both conventional triaxial and R
. thick-walled cylinder tests on Loch Aline sand, for the purpose of
w determining the shape of the failure surface octahedral cross-section.
His results are shown in Figure 3.10, and he concluded that the
Mohr-Coulomb failure criterion was a good fit to the data. In fact, L,!,
Kirkpatrick felt the Mohr-Coulomb criterion fit his data so well that he “
decided not to modify the axial load capability of his thick cylinder T
o device to obtain u values other than those shown in Figure 3.10. :‘,—.;
R
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- Both Topping's and Kirkpatricks's results were cited by [Newmark e

i (1960:28)] as examples of failure criteria having roughly triangular .
octahedral cross-sections, and unequal [octahedral shear] strengths in \

ESI triaxial compression and extension.

4.10 Coleman's Failure Criterion

[Coleman (1960:182)] proposed a failure criterion based on an

invariant formulation of the Mohr-Coulomb failure criterion for a 3;&
cohesionless material. From Figure 4.3 we have (for d = o), ééi
\/5 (—995) sine, = \A;. -\f; O°Ct cosw , | sing (4.103) BN
%ct oct JS N
so that :
T iiﬁf
3 (—933) sinu, S
N %oct o
sin ¢ = (4.104)
TOCt NS
'\/5- - ( ) COSUZ pom
%ct T
When u = +1 i%
02 = 60. ‘:":.
Lol L
-
cos u, = %-= - %4cos 34.»2)1/3 ’{’
and when y = -1 ?zg.
uy = 120° i
3 L
sin uy =V b
: 11 1/3 o
i cos Uz z - 3 z - -z-(cos 302) ::!
e
o
50 o
< o |
2 -




Therefore, if we replace sin w, by J3/2, and cos wy by
-1/2(cos 302)1/3, the resulting expression will match Equation (4.103)
for u = #1, The resulting expression is
T
()%
oct

Toct\ 1 1/3
\/2 + (":zt) z(cos 3u2)
Vi,

=21 J.
1 3
7" (2 )

sin ;:

173 (4.105)

Clearing of fractions and squaring yields

2
21 Jay 1/3 -
3, = [—31 + (-2—3-) ] sin2¢ (4.106)

which is Coleman's expression. The mathematically convenient feature of
Equation (4.105) is that the invariants appear separately, and in a
numerator,

Equation (4.103) can also be written in the form

Toct . \}2(3 + uZ) sin ¢

ooct 3 + m sin ‘ (4-107)
When u = -1 (triaxial compression) Equation (4.107) yields
242 sing
T
(°°Ct ) - T (4.108)
oct/ ¢C c
and when , = 1 (triaxial extension) Equation (4.107) yields
22 sing
1
oct/e e
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-~ 4.11 Lomize and Kryzhanovsky's Failure Criterion 7?;
T
i [Lomize and Kryzhanovsky (1967)] performed stress-controlled true ".‘1
triaxial tests on a quartz sand from the Volga region, using y = -1, 0 and
;; 1. They defined strength as the peak value of Toct ON @ plot of Toct

Versus v, .4, at constant %ct and u, and used the following invariant

expression as their empirical failure criterion:

I 3
1 a
T;) D = v (4.110)
o where oy
1 Toct o
D, = — (4.111) -
k ) NG
\/g oct N
~ 9]
a=1.73 (4.112) T
B
= 260 (4.113) 2
i Now Rl
3 3 2
Iy = ooy (633 cos 36 0,7 - 90,2+ 1) (4.114) B
where 4
| "
) cos 3 = - -"—‘9-—2“—3-}7 (4.115) o
N (3 +47) >
N so that o
L
5 1’ 27 2
= (4.116) R
'3 6B cos 3D, - 9,5+ 1
Equation (4.110) can therefore be writtén in the form L_
1.73 <
3 2, .,1.73 (21’
(6B cos 30, ° - 90,2+ 173 L Lo p s
J' or .‘!
, 52 )
.4
L
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‘ 1: N .l‘

(G\ﬁ-cos 3.0, 3- 9p, 2+ 1)1-73
D, = K ek (4.117)
k - 1.1510 ‘

Equations (4.115) and (4.117) can be used to find the value of D, for a
given value of u, by iteration. Figure 3.24 is a plot of the results.

For a more thorough review of investigations of the effect of the
intermediate principal stress on soil shear strength, see [Merkle
(1971:Chapter 6)].

4,12 Modified Lade Model

[Lade (1972:137, 138)] simplified the failure criterion of Lomize and
Kryzhanovsky by deleting the factor Dk in Equation (4.110). The failure

criterion which Lade fit to true triaxial test data on Monterey No. 0O Sand

was written in the form

3
I - k113 =0 (4.118)

Using this failure criterion as a basis, Lade developed an elastoplastic
constitutive model having one associative and one nonassociative yield
surface. His equations are given below, from [Lade and Nelson (1981)].

The associative compressive yield surface and plastic potential function

are

fc = fc(c) - fc(Hc) =0 (4.119)
where

! 2 2 2 2

fc = Il + 212 = 0g + 9y + o3 (4.120)

£ . P2yl (4.121)

c*Pa T, .
and
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Py = atmospheric pressure

(4.122)

The nonassociative expansive yield surface and plastic potential function

are

where

and

f = fp(o) - fp(wp) =0

f = (T_— - 27—
P 3 pa
]

fp = at failure

W
f - aePWPRyY/A (0 0
p Pa

3 Pa,m

as follows

b

1+ sin 5;

Ng = T—sTn ¢

c
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= friction angle for triaxial compression

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)

The octahedral cross-section of Lade's failure surface can be computed

(4.128)

(4.129)

(4.130)




A = C08 3¢ (4.131)
/i
Toct B
Z = Dk = °°ct = ts_—A—z- (iterate) (4.132)

Octahedral cross-section values are tabulated for 3; = 30° in Table 4.1,
and plotted in Figure 4.5. This plot happens to be an excellent fit to
Von Karman's data in Figure 3.7.

Lade and Nelson state (p.504) that their "yield function defines the
stress levels at which plastic strain increments will occur” [emphasis
added]. The paper is silent about testing a given total strain increment
to see whether it will cause additional plastic strain, and in this
respect the model appears to be deficient. However, the deficiency is
easy to correct, and the correction is discussed below.

It is convenient to let the index 1 refer to quantities related to
the collapse yield surface, and the index 2 refer to quantities related to
the expansive yield surface. 1In addition, define the {s} matrix by
Equation (4.60), the {e} matrix by Equation (4.61), and the 6 x 6 elastic
stiffness matrix, C% based on Equation (4.44), i.e.,

1 Ko Ko 0 0 0 ]
K, 1 Ko 0 0 0
ct=m Ko Ko 1 0 0 0 (4.133)
0 0 0 1K, 0 0
0 0 0 0 1-K, 0
L 0 0 0 0 0 1K, .
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Then

{de) = {dec®) + {deP) (4.134)
where

{deP} = (dePly + (dePFy (4.135)

{do} = €% (de®) (4.136)

Assuming both yield surfaces are active (which may not be the case), each

of the two consistency conditions takes the form

af, T af pi T
J J oW J
df; = {3551 {do} * w3 o) (deP’)
afj T af‘,l
= {V— + — = = M .
= {35} {de} * hy 3 0, (j =1, 2; no sum) (4.137)
Now let
afJ
Fij = o (4.138)
3g.
64 = %% (4.139)
Then
{deP) = 6 (dr} (4.140)
In addition, let
of g
Dij = h, 7 843 (no sum) (4.141) \€:
S
Equation (4.137) can now be written for a strain controlled condition in ;jﬂ
the form
56
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Lae

(af) = F (doy + l0, (a0}

= F1C® ({de} - G {dr)} + D {dn) = {0} (4.142)

and Equation (4.142) can be solved for {dx}.

() = (F7e% - Mo )=t FTc® (de) (4.143)

To determine whether both yield surfaces are active, we examine the
plastic work increments,

awPd . hyda, (j=1, 2; no sum) (4.144)
Now let

hij = hi“ij (no sum) (4.145)

Then Equation (4.144) can be written in the form

(@ = o qary = (M (F'e%s - o, 171 FTc®qde) = Q {de)(4.146)

where

r Tee. o -1 .Tee
Q= "h, (F'c®% - "D, ) FC (4.147)

The Q matrix is 2 x 6, which means that Equation (4.146) requires the
total strain increment vector {de} to have positive dot products with both

the vectors (Q 1 and LQJ 2 i{n order for both yield surfaces to be

active. This requirement is shown graphically in Figure 4.6. The Q ;5:
matrix depends only on the current stress and both the collapse and ;;2
expansive plastic work. Thus it is possible to tell beforehand whether a ;;5
given total strain increment will cause both yfeld surfaces to be active, ?;ii
when the current stress point lies on the intersection of the two current fé’%
yleld surfaces. ;;ﬁ
If Ee . 61 and 3: . 6; are not both positive, then each yield “.
surface must be examined separately to see whether 1t is active alone. o
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Thus there are four possibilities, as shown below. However, it is not

Surface 2(P)
Active Inactive
Surface 1 (C) Active cp c
] Inactive P E
S{ clear from a comparison of Equations (4.72) and (4.143) that the outcome
- >f the above tests will be unique, unless the matrix ngfg is diagonal.
i Provided both yield surfaces are active, substitution of
5 Equations (4.134), (4.140) and (4.143) into Equation (4.136) yields
_ {do} = €% {de®) = €% {{de} - {(deP)} = €% {{de} - 6 {dr})
=c® - 6Fc% - Mo )7 FTe®T (dey= €%P (de}  (4.148)
| where the elastoplastic incremental stiffness matrix, C€P, is
EFP - EF _ EFEKETEﬁE . FQJ y-1 ETEF (4.149)

Figures 4.7 through 4.11 show stress-strain curves for Antelope

Valley Sand using the Lade model, computed by the ARA Soil Element Model

;; (SEM) program using model parameters given by [Lade (1981)]. Figure 4.7
? shows hydrostatic compression with unloading and reloading. Since Lade's ;
FT model unloads and reloads elastically, it does not show hysteresis. The 3
elastic moduli are independent of strain, so the two unloading lines in f;;§
Figure 4.7 are parallel. Figure 4.8 shows uniaxial compression with ij&
o unloading. Figures 4.9, 4.10 and 4.11 show curves for three fsotropically .
v consolidated drained triaxial compression tests, at constant cell pressure 5
5: equal to the consolidation stress. Figure 4.9 shows plots of principal ;ij
stress difference versus axial strain. Since the three samples were at ;;;
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the same void ratio prior to consolidation, the sample subjected to the
Ii lowest consolidation stress (14 psi) behaved as a dense sand, increasing
in volume for axial strains larger than about 5.5 percent. The sample
subjected to the highest consolidation stress (71 psi) behaved as a loose
sand, decreasing in volume throughout shear. Figure 4.10 shows volumetric
strain plotted against axial strain, and Figure 4,11 shows the hydrostatic
= component of stress plotted against volumetric strain. Figures 4.7 and

4.11 would be identical if the soil were linearly elastic. Obviously it

R | B

is not. Comparison of these two figures emphasizes the stress path

dependence of the stress-strain behavior of Antelope Valley Sand.

-
L S %

- 4.13 Model Development
The modified Lade model discussed above is a partly nonassociative,
isotropic hardening elastoplastic model, with both yield functions and
il both plastic potential functions related to stress through the total
stress invariants, Il' 12, and 13. Using the total stress
fj invariants has the mathematical advantage that differentiation with
' respect to total stress is straightforward. However, Lade's model has the
disadvantages that it cannot, in general, achieve an exact fit to
E;E different friction angles in triaxial compression and extension, and the
. total stress invariants, 12 and 13. lack a simple physical
interpretation.
In contrast to the above situation, octahedral strength plots of the
type shown in Figures 3.7 through 3.26 and Figures 4.3 through 4.5 do have

a simple physical interpetation. They relate $ and u; or T t and o; or

oc
J2 and J3, where J, and J3 are the second and third deviator
stress fnvariants, arising in the solution of the principal stress

characteristic equation. Thus the question naturally arises whether it
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might be more convenient, especially from the standpoint of physical

interpretation, to make the yield and potential functions explicitly
depend on Il, Jz, and J3, rather than on Il' 12, and I3.

First of all, it is well known that the plastic work increment,
dwP, can be expressed as the sum of a volumetric term and a deviatoric

or distortional term. This is done by defining the stress deviator

components, sij' and plastic strain deviator components, e?j, by
the equations
o/
kk
‘Ek
P _ P _

The expression for the plastic work increment can now be written in

the form
o deP
p _ P _ kk e mm
Kk 4P g geP 4.152

The first term in Equation (4.152) is the volumetric plastic work
increment; the second term is ihe deviatoric or distortional plastic work
increment. So far, so good; Equation (4.152) suggests that relating f and
g to volumetric and distortional invariants has a physical basis.

The main question, then, isswhether the flow rule will have a
convenient mathematical form if we write

g = 9(1;, Jp, J5) (4.153)

In place of Equation (4.18), we can write
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k1,29 3 Kk (4.154)

where
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30,
ij
n

and by analogy with Equations (4.20) and (4.23).

w
w
[
x
b
@
Q
-,
€
TR SCILICIE DIV IR SL LIS VR IR ‘_".‘
. ‘] 1‘L ..'\‘\ é Y ) l“ N S

= 845 (4.19)

RRPIRT: 3 LR :
v e ‘D "‘.F 4 . '-. " 'l l: . .“ “:
BICINEN . | SRR

aJ2
ECT S (4.155)
-
3,
g - oK (4.156) =
- rel
..'..-~
and from Equation (4.150) L
~ as 37
k1 1 250
2043 = 55k851 ~ T Si1dij (4.157) e

[ /]
g2
K|

Equation (4.54) can now be written in the form

P _ ayf2 3 1
dey "‘[3’?; S35 “a‘g;”sw”‘ik%l 7 %8s

+

2 1
(ﬁ;)(sk])(cikcj] - 3 84784501

. J .
a? ag ag 2 ol

Equation (4.158) yields the volumetric plastic strain increment,

a

deP. = dh(3 ) - d (2 ) (4.159)
i1 ??I aaoct

-,’x,'fl-“,t.'_.‘.'.'."'
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Equation (4.160) seems workable enough, so we proceed to investigate the
form of the expression for the plastic work increment, dwP.
| Equation (4.152) yields
P _ 3 3 3
awP = [;?I I+ (2 333.12 +3 -3-33J3)J (4.161)

- The first term in brackets on the RHS of Equation (4.161) is the
‘ volumetric term; the last two terms comprise the distortional term.

Equation (4.31) thus has two alternate forms:
3 3 3
h=3%11+2ﬁ312+33?513

‘ =—:-?I11+2%§;J2+3%§§J3 (4.162)

which means that
) ? ? ?
_ 2-5?;12*33-?513=233—J2*33§;J3 | (4.163)
K
Thus, there appears to be no reason for not using J2 and J3 instead of

12 and I3 in the formulation of the yield and potential functions, and

~ good physical justification for doing so. 15
v The proposed expansive yield criterion is of the form of o
Equation (4.123), i.e. .;
. fp = fp(°oct' J2, J3) - fp(Hp) =0 (4.164) 5{2
¥ where =
z 3
= 62
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e
' Toct Pa -
fp = (—=)(1 - e cos 3u){ + b) (4.165) -
pa c'OCt @
| ) -
fp = a at failure (4.166) S
P, = atmospheric pressure o
b{ )
. At failure, substitution of Equations (4.165) and (4.166) into N
Equation (4.164) yields -
: * (55
o (525)(1 - e cos 3u) = 23— - 2 (4.167) ¥
- %ct Pa o
LY L
,
The parameters a, b, and e can be determined from a series of triaxial
compression and extension tests. For triaxial compression (w = 120°), \
Equation (4.167) reduces to 7:3;3

[
r I"

e (9) (G2

- Pa 1+b (°oct)
.n Pa ' )
or i
%ct 1-e [ ("oct) oct :
- 1+b Sk, *k (—) (4.168)
Toct a Pa ic 2c Pa
3
" where e
K, =1-¢ (4.169)
ic ~ a :
l1-¢e ‘o
kpe = BIAZE) (4.170) L
For triaxial extension (v = 60°), Equation (4.167) reduces to *
[ ] ;’
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Pa
. or
a ag aq
] °°t=1*e[1+b(—ﬂ)]=k + K (°Ct) (4.171)
o Toct a Pa ie 2e\ p,
e where
. 1+e
- kle = =3 (4.172)
2>
1 +e
.. Kpg = BIZ5-5) (4.173)
Plots of Equations (4.168) and (4.171) are shown in Figure 4.12. Such
o plots are often referred to as Southwell plots [Timoshenko and Gere
_ . . s
' (1961:191)]. Having determined the parameters k; ., k,., k;,, and -
Kye» the parameter b can be calculated from the expressions
. i
k k
2c 2e
b = = (4.174)
H. ke e ~-e

which provides a consistency check. The parameters a and e can be

calculated from Equations (4.169) and (4.172), written in the form Ny
k., a+te=1 E.; ..
so that ' !!‘
le lc f:.
o
; 2k k. - k e
lc le 1c = N
e=1-k, a=1- = (4.176) =@
- lc K1e * ke k1e T Kic '"T!
o —
|
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Having calculated the parameters a and b (and e) from triaxial
compression and extension tests, the accuracy of the assumed octahedral
cross-sect ~ orm can be investigated by a series of true triaxial
tests. If, in Equation (4.167) we set

-
1+ b (°oct )
Pa

then Equation (4.167) can be written in the form

Toct . p
%ct l - e cosdu

(4.178)

which is the equation for an ellipse in polar coordinates.

Equation (4.178) can be written in a 1inear form to obtain the octahedral
eccentricity, e, as a consistency check on the previously determined value
from Equation (4.176)

Po%ct
Toct

=1 - e cosdu (4.179)

A plot of Equation (4.179) is shown in Figure 4,13

Octahedral cross-section data for the case (b = o; 3; = 32°;

’e = 35°) are tabulated in Table 4.2 and plotted in Figure 4.13. The
calculation sequence used to obtain the values shown in Table 4.2 and

Figure 4.13 is as follows

tan up =\Z§ (4.180)
u
22 sin 3;
zc = —3-—_—5—.’”: (4.181)
22 sin fe
Ze = m (4.182)
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R (4.183)
Z ¥4
e = 77 (4.184)
C
a
S (4.185)

\ﬁ-z sinu2

sin ¢ = -2—_—Z——COTJE— (4.186)

The forms of the compressive yield criterion (cap), and the plastic
potential functions for the proposed model are yet to be determined, and

will be the object of major effort during FY84.
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5.0 SUMMARY

Recognizing the load-deformation response of a soil mass s governed
by effective stress, this report begins by developing the general
equations for dynamic response of a saturated soil element. Particular
attention is paid to the physical significance of the parameters and the
equations. These equations are the framework into which a soil
constitutive mode! must fit. As an example of the application of the
general equations, the problem of determining incremental total stress
moduli for static undrained (no flow) conditions is examined, for both
isotropic (hydrostatic) and constrained (one-dimensional) compression.
The results for isotropic compression agree with those of Gassmann. The
results for constrained compression should be useful for studies of soil
liquefaction under explosive or earthquake loading.

Types of soil stress-strain behavior observed in tests are examined,
to see what features a dynamic soil constitutive model should possess.
Included are effective stress dependence, nonlinearity, stress path
dependence, dilatancy, criticial state behavior at large shear strains,
peak strength behavior (or lack of it), influence of the intermediate
principal stress on shear stength, low tensile strength, inelasticity,
nonassociated plastic behavior, the Baushinger effect, rate dependence,
hysteresis, decrease of damping with the number of cycles of reversed
loading, anisotropy, and sample disturbance.

The soil constitutive model proposed for complex dynamic loading is
an isotropic, strain hardening elastoplastic model. The basic equations
of elastoplaticity are developed in this report for the purpose of

emphasizing their logical structure. A direct (non-iterative) solution is
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developed for the case of mixed boundary conditions, because several of

. the most common laboratory soil tests are of this type (e.g. strain-
controlled triaxial compression and confined or uniaxial compression). and
::“ also because mixed boundary values occur frequently in dynamic finite
N difference and finite element computer calculations of the type in which
the proposed model will be used. Criteria for distinguishing between
, loading and unloading are carefully examined, because of the oscillatory
; nature of soil stress-strain response under explosive and earthquake
'T:T' loading.
The proposed model shear failure criterion has the following
- convenient features:
1. It is related to stress through the first total stress invariant
’ and the second and third deviator stress invariants, each of
i which has a2 simple physical interpretation.
2. 1Its parameters can be determined from simple linear plots.
> 3. The model can match unequal friction angles in triaxial
. compression and extension.
" 4. The ratio of octahedral shear to octahedral normal stress can be
\ calculated directly (without iteration) when the value of Lode's
- parameter is known.
Other features of the model are yet to be determined.
The objectives of the next year's effort are to complete the proposed '4
’ model formulation, and to demonstrate its ability to reproduce important ";;.,1
aspects of observed soil stress-strain behavior discussed in Section 3. \\
ey
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LADE FAILURE SURFACE OCTAHEDRAL CROSS-SECTION
FOR 6. = 30 DEGREES

TABLE 4.1

w2 u z sin ¢
DEG

120 -1.000 0.56569 0.500
115 -0.808 0.56149 0.534
110 -0.630 0.55012 0.559
105 -0.464 0.53434 0.576
100 -0.305 0.51694 0.586
95 -0.152 0.49991 0.592
90 0.000 0.48442 0.594
85 0.152 0.47071 0.591
80 0.305 0.45893 0.587
75 0.464 0.44949 0.579
70 0.630 0.44263 0.570
65 0.808 0.43847 0.560
60 1.000 0.43708 0.548

V3
i F T
sin¢=/3—251"“’
y@? - Z2C0S u
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TABLE 4.2

PROPOSED FAILURE SURFACE OCTAHEDRAL CROSS-SECTION
FOR (b = 0; f. = 32 DEGREES; fe = 35 DEGREES)

r‘u w2 z sin ¢
-1.0 120.000 0.60679 0.530
-0.9 117.457 0.60589 0.550
-0.8 114.791 0.60304 0.569
-0.7 112.006 0.59810 0.586
-0.6 109.107 0.59105 0.602
-0.5 106.102 0.58198 0.614
-0.4 103.004 0.57118 0.625
-0.3 99.826 0.55901 0.632
-0.2 96.587 0.54597 0.636
-0.1 93.304 0.53259 0.637

0 90.000 0.51938 0.636
c.1 86.696 0.50681 0.633
0.2 83.413 0.45526 0.628
0.3 80.174 0.48500 0.622
0.4 76.996 0.47620 0.615
0.5 73.898 0.4€894 0.608
0.6 70.893 0.46321 0.600
0.7 67.994 0.45897 0.593
0.8 65.209 0.45610 0.586
0.9 62.543 0.45449 0.580
1.0 60.000 0.45398 0.574
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Figure 3.1. Influence of Effective Stress Path on Stress-Strain
Curve Nonlinearity [after Lambe and Whitman (1969:
120, 129, 325)].
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Figure 3.5. Drained Stress-Strain Curves for Normally Consolidated
and Overconsolidated Samples of the Same Clay, Under
the Same Constant Confining Pressure [after Lambe and
Whitman (1969:302, 312)].
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Figure 3.6. Drained Stress-Strain Curves for a Clay at the Same o
Initial Void Ratio, Under High and Low Constant Confining
Pressures [after Lambe and Whitman (1969:302, 312)].

83
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Figure 3.7. Effect of 52 on the Strength of Carrara Marble, T
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Figure 3.9. Effect of Eé on the Strength of Fontainebleau Sand.
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Figure 3.10. Effect of Sé on the Strength of Loch Aline Sand.
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Figure 3.14, Effect of 5} on the Strength of the 30.59 Fraction of Standarg
s Ottawa Sand (e = 0.47 to 0.52).
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Figure 3.15. Effect of Eé on the Strength of Remolded Weald Clay.
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Figure 3.21. Effect of 32 on the Strength of Standard Dttawa Sand.
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